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I. INTRODUCTION

The magnetic moment ~µ of a particle can be written as

~µ =
e~

2mc
g~s, (1)

in which e andm are the particle’s charge and mass, ~s is the intrinsic spin angular momentum

(s = 1/2 for a lepton and for a nucleon) and g is the gyromagnetic ratio. For a Dirac particle

g = 2. If g does not equal 2, an anomalous g value a is defined:

g = 2(1 + a) or a =
g − 2

2
. (2)

The magnetic moments and g-values of particles have played a central role in the development

of modern physics, including quantum electrodynamics, nuclear physics and particle physics.

This paper is based on a lecture given for the course on Subnuclear Physics at the Erice School

in Sicily, September, 2001.

The electron’s spin and magnetic moment were evidenced from the deflection of atoms

in an inhomogeneous magnetic field and the observation of fine structure by optical spec-

troscopy [1, 2]. Within the experimental accuracy the magnetic moment was equal to

e~/(2mc) (1 Bohr magneton) and g equaled 2. The proton’s spin and magnetic moment

were determined from an atomic beam magnetic deflection experiment [3, 4]. The proton

spin is 1/2 and its magnetic moment is 2.8 e~/(2Mc) in which M is the proton mass. Thus

the proton is not a Dirac particle and its anomalous g–value, a = 1.8, indicates that the

proton is not a point particle but has internal structure.

The discovery from atomic beam magnetic resonance spectroscopy that the electron has

a small anomalous g-value, ae = 0.001 19(5) [5], was — together with the Lamb shift [6]

and the anomalous value of the hyperfine structure of hydrogen [7] — the stimulus for the

development of modern quantum electrodynamics. The process came to be understood as a

virtual radiative correction for which in lowest order ae = α/(2π) = 0.001 16 [8].

The muon also has an anomalous magnetic moment which was first measured in an exper-

iment based on parity nonconservation in the decays π+ → µ+ + νµ and µ+ → e+ + ν̄µ + νe,

and it was found that aµ = 0.001 19(10) [9]. This verified that the muon is a heavy elec-

tron with, to within the experimental errors, the same anomalous g-value due to the virtual

radiative correction.

Experimental measurements and theoretical calculations of the electron anomalous g-

value ae have achieved very high precision with the uncertainty δae ∼ 4 ppb [10]. The exper-

iment is a radiofrequency spectroscopic measurement of the energy levels of a single electron

in a magnetic and electric storage bottle (Penning trap), associated with its spin and orbital
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motions [11]. The theory is based on a perturbation theory of quantum electrodynamics

with expansion parameter α and includes higher order virtual radiative corrections [12]. The

agreement of the experimental and theoretical values for ae provides one of the most sensitive

tests of quantum electrodynamics.

Experimental measurements and theoretical calculations of the muon anomalous g-value

aµ have also achieved high precision with the uncertainty δaµ ∼ 1 ppm. Several well-known

experiments on the muon were done at CERN. The first CERN experiment [9], mentioned

above, studied the orbital and spin motion of low momentum (∼ 30 MeV/c) µ+ in a homo-

geneous magnetic field, which involved about 2 orbital turns between the entrance and exit

of the muons from the field. After this first experiment, which found aµ = 0.001 19(10) and

established the leading order radiative contribution, aµ = α/(2π), a second experiment was

done at CERN [13] which utilized a muon storage ring of 1.0 T for muons with γ = 10 and

determined aµ to 160 ppm. When the theoretical calculation included properly the higher

order radiative correction term of order α2, including the Feynman diagram for light by light

scattering, the experimental and theoretical values agreed. The third and final CERN ex-

periment [14] had a muon magnetic storage ring of 1.47 T, injected pions to produce muons

(µ+ and µ−) with γ = 30, and determined aµ to 7.6 ppm. For the theory it was necessary

to calculate the contribution from the modification of the photon propagator due to virtual

hadrons. Then the experimental and theoretical values, both with an accuracy of 8 ppm,

agreed [10]. Extensive reviews of the CERN experiments are found in Refs. [15, 16]

The goal of the on-going experiment at Brookhaven National Laboratory is to improve the

accuracy of the CERN measurement by a factor of 20, to 0.4 ppm. The experiment utilizes

a magnetic storage ring of 1.45 T for muons with γ = 30 with muon injection. A detailed

description of this experiment will be given in Section V.

A precise measurement of aµ of the muon is of great value for comparison with standard

theory, because the theory involves all the fundamental interactions — quantum electrody-

namics, electroweak interaction, and quantum chromodynamics — in a significant way [10].

Despite the precision of the electron g-value, the muon g-value is more sensitive to standard

model extensions, typically by a factor of (mµ/me)
2. The predicted electroweak contribu-

tion, not yet observed, should be measured. Many speculative theories beyond the standard

model predict deviations of aµ(expt) from its theoretical value aµ(SM) based on the standard

model. A deviation of aµ(expt) from aµ(SM) indicates new physics, such as lepton struc-

ture, W anomalous magnetic moment, supersymmetry, leptoquarks, new particles, or extra

dimensions. However, aµ by itself can not determine the specific cause of such a deviation.

Agreement of aµ(expt) and aµ(SM) places constraints on speculative new theories [10].

Following this section I, the article includes the following sections: Section II, The Electron
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Anomalous Magnetic Moment; Section III, Principle of the current muon g − 2 experiment;

Section IV, Particle Dynamics; Section V, Experimental Set-up at BNL; Section VI, Data

Analysis; Section VII, Results; Section VIII, Theoretical Value for aµ; Section IX, Com-

parison of Experiment and Theory; Section X, Contributions Beyond the Standard Model;

Section XI, Future; Section XII, Early History of the Experiment at BNL, Our Collaboration;

Section XIII, Acknowledgements.

II. THE ELECTRON ANOMALOUS MAGNETIC MOMENT

The current experimental value for ae comes from an experiment in which a single electron

is confined in an electromagnetic trap with a strong magnetic field [11]. The energy levels

are determined primarily by the orbital and spin motions of the electron in the strong axial

magnetic field B = 5 T,

W = µ0mlB + µsmsB,

in which µ0 and µs are the orbital and spin magnetic moments, and ml and ms are the

components of orbital and spin angular momentum (Fig. 1). Microwave magnetic resonance

transitions in which ∆ml and/or ∆ms = ±1 allow the determination of ae.

A schematic diagram of the apparatus is shown in Fig. 2. Electrons are injected into the

trap from a field emission electrode. By repeatedly dumping the trap, a single electron can

be isolated with kinetic energy < 1 meV. The resonances are observed through the axial

frequency shift. A resonance curve is shown in Fig. 3. The result is

ae(expt) = 1 159 652 188(4) · 10−12 (4 ppb), (3)

where the largest uncertainty arises from the potential cavity-mode shift [11]. Further im-

provement in experimental accuracy will require further understanding and control over the

interaction of a single electron with the electromagnetic modes of a surrounding microwave

cavity [17].

The theoretical value for ae is expressed as a power series in α [10, 12, 18]. Feynman

diagrams are shown in Fig. 4. Up through 6th order (α3 term) analytic values are now

available for the coefficients [19, 20]. The coefficient of the α4 term involves the numerical

evaluation of 820 Feynman diagrams each with 8 vertices. The result follows:

ae(QED : e, γ) = 0.5
(α
π

)
− 0.328 478 965 6 . . .

(α
π

)2

+

1.181 241 5 . . .
(α
π

)3

− 1.509 8(384)
(α
π

)4

. (4)
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FIG. 1: Lowest Rabi-Landau levels for a geonium atom. The axial frequency (shown in the right-
hand scale) corresponds to the coupling via the axial magnetic bottle field. The hν ′c energy difference
and the relativistic shift (R = 0.5 ppb) have been exagerated for clarity; vanishing axial and
magnetron energies are also assumed. The lowest state (n = 0) is occupied by the electron or
positron 80%–90% of the time. This figure is reproduced from Ref. [11].

The contribution to ae of all particles heavier than the electron,

ae(QED : µ, τ) + ae(had) + ae(weak) = 4.393(27) · 10−12, (5)

is only at the level of the experimental accuracy 4× 10−12. Thus the electron anomalous

magnetic moment is a very pure QED problem involving only e−, e+ and γ.

To compare ae(expt) and ae(theory), a value for α must be determined with high accuracy

(∼4 ppb) by some other experiment. At present methods determine α only to 25 ppb or

worse. The values of ae(theory) using these α values agree with ae(expt) [18, 21]. Recently,

a measurement of the helium fine structure interval 23P1-to-23P0 has been reported with a

precision of 30 ppb [22], but the theoretical calculation must be improved considerably to

determine α to 15 ppb. Perhaps the most promising approach involves a precision measure-

ment of ~/MCs via photon recoil effects in Cesium, which is based on simpler theoretical

considerations, [23]. We choose to take QED as valid for ae, i.e. ae(expt) = ae(theory).

Hence, the most accurate value for α is obtained:

α−1(ae) = 137.035 999 58(52) (4 ppb) . (6)
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FIG. 2: Schematic of the geonium apparatus. The appropriately biased hyperbolic endcaps and
ring electrodes trap the charge axially while coupling the driven harmonic motion to an external
LC circuit tuned to the driven axial frequency. Radial trapping of the charge is produced by the
strong magnetic field obtained from a superconducting solenoid. This figure is reproduced from
Ref. [11].

III. PRINCIPLE OF EXPERIMENT

The principle of the experiment at BNL is the same as that of the last CERN experi-

ment [14] and involves the study of the orbital and spin motions of high energy polarized

muons in a magnetic storage ring. Key improvements include the very high intensity of the

primary proton beam, the injection of muons instead of pions into the storage ring, and a

superferric storage ring magnet.

Longitudinally polarized muons from pion decay are injected into the storage ring which

has a homogeneous magnetic field ~B (Fig. 5). In the horizontal plane of the orbit the muon

will execute relativistic cyclotron motion with angular frequency ωc and the muon spin will

precess with angular frequency ωs, which is slightly greater than ωc by the difference angular

frequency ωa = ωs − ωc,

ωc =
eB

mµcγ
, (7)
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FIG. 3: Axial resonance signals at ≈ 60 MHz. The signal-to-noise ratio of this ≈ 8 Hz wide line
corresponds to a frequency resolution of 10 ppb. Both absorption and dispersion modes are shown
with the latter mode appropriate for the frequency shift detection scheme employed in these geonium
experiments. This figure is reproduced from Ref. [11].

ωs =
eB

mµcγ
+

e

mµc
aµB, (8)

ωa =
e

mµc
aµB, (9)

in which aµ = (gµ − 2)/2. The quantity ωa is designated the muon g − 2 frequency. In the

experiment ωa and B are measured; the muon mass mµ is obtained from an independent

experiment on muonium.

In reality vertical focusing must be provided to retain the muons in the storage ring. This

is done with an electric quadrupole field ~E in the plane normal to the particle orbit, which

modifies ωa according to

~ωa =
e

mc

(
aµ
~B −

[
aµ −

1

γ2 − 1

]
~β × ~E

)
. (10)

If γ is chosen so that aµ − 1/(γ2 − 1) = 0 — the so-called magic γ — then ~E does not affect

the frequency ~ωa.
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FIG. 4: Feynman diagrams for ae.
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µ

Bm
e=-aaω

FIG. 5: Muon momentum and spin motion in an electromagnetic field. The muon spin direction is
determined by detection of the decay positron.

The spin direction of the muon is determined from the direction of emission of decay

positrons from muon decay, µ+ → e+ + νe + ν̄µ. Parity conservation is violated in this decay

so that there is a correlation between the muon spin direction and the direction of emission

of the positrons. In the muon rest frame the differential transition probability for muon

decay is given by

dΓ = N(Ee)

(
1 +

1− 2Ee

3− 2Ee

cos θ

)
dΩ, (11)

in which Ee is the positron energy in units of mµ/2, N(Ee) is a normalization factor, θ is the

angle between the positron motion in the muon rest frame and the muon spin direction. The

factor (1− 2Ee)/(3− 2Ee) is designated the asymmetry factor A. The µ+ decay distribution

is peaked strongly for small θ.

Decay positrons are observed by electromagnetic calorimeters. The number of decay

positrons with energies greater than E emitted at time t after muons are injected into the

storage ring,

N(t) = N0(E) exp

(
−t
γτ

)
[1 + A(E) sin (ωat+ φ(E))] , (12)

in which N0(E) is a normalization factor, τ is the muon lifetime in the muon rest frame

(τ ' 2 µs), and A is the asymmetry factor for positrons with energies greater than E. The

exponential factor arises from muon decay and the factor in brackets accounts for the muon

g − 2 angular frequency ωa [24].

The angular frequency ωa is determined from the time distribution of decay positrons

observed with electromagnetic calorimeters.
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FIG. 6: Breit-Rabi energy level diagram of ground state muonium. At high fields the transitions
ν12 and ν34 are essentially muon spin flip transitions.

The magnetic field B is measured by nuclear magnetic resonance (NMR) using a standard

spherical probe of H2O. This standard can be related to the magnetic moment of a free

proton. Hence,

B =
~ωp

2µp

.

Using the above relation for B, the frequency ωa from Eq. 9, and µµ = (1 + aµ)e~/(2mµc),

one obtains

aµ =
R

λ−R
, (13)

where R = ωa/ωp and λ = µµ/µp.

The quantity λ appears because the value of mµ is needed, and also because the B field

measurement involves Mp. Measurements of the microwave spectrum of ground state muo-

nium have provided a precise value for λ [25]. The hyperfine and Zeeman levels of 2S 1
2

ground

state muonium are shown in Fig. 6. Microwave transitions ν12 and ν34 are measured in a

strong magnetic fieldB of 1.6 T. The experiment utilizes the parity nonconserving correlation

of the direction of the muon spin and the positron emission in the decay µ+ → e+ + νe + ν̄µ.

Both the hfs interval ∆ν and the muon magnetic moment µµ are determined from ν12

and ν34,

∆ν = ν12 + ν34,

µµB = ν34 − ν12 + ∆ν
(√

1 + x2 − x
)
,
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where x = (gJµ
e
B + g′µµ

µ
B)B/(h∆ν) is proportional to the magnetic field strength. The

measured value ∆ν in combination with ∆ν(theory) [26] determine

µµ

µp

= λ = 3.183 345 39(10) (30 ppb) [25]. (14)

IV. PARTICLE DYNAMICS

Both the orbital and spin dynamics are important for the muon g − 2 experiment. The

orbital motion can be considered separately from the spin motion because forces on the

muon associated with the spin are negligible compared to the forces on the charge due to

the magnetic and electric fields in the storage ring.

The force ~F on a particle with charge e moving with a velocity ~v in fields ~E and ~B is

~F = e
(
~E + ~v × ~B

)
=

d~p

dt
. (15)

In a uniform field ~B the particle motion is circular and the equilibrium radius is

r0 =
E0

ecB0

, (16)

for a relativistic particle of energy E0 moving in a field B0.

The relativistic equations of motion in cylindrical coordinates of a muon with charge e in a

static magnetic field ~B(r, z) and a static electric field ~E(r, z) where the fields have azimuthal

symmetry, i.e. are independent of θ, are [27, 28]:

d

dt
(mṙ) = mrθ̇2 − erθ̇Bz + eEr, (17)

d

dt
(mr2θ̇) = 0, (18)

d

dt
(mż) = erθ̇Br + eEz, (19)

in which r, θ, z are the radial, azimuthal, and vertical coordinates of the particle.

The betatron oscillations are important in our experiment because they modify the

positron time spectrum.

For our storage ring, the magnetic field needs to be very homogeneous and weak focusing

of the muons is provided by an electric quadrupole field. Since weak focusing by an inhomo-

geneous magnetic field is the usual and well-understood approach, we first review focusing

by an inhomogeneous magnetic field and then provide its equivalence to weak focusing by

an electric quadrupole field.
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For focusing by an inhomogeneous magnetic field we take:

Bz = B0

(r0
r

)n

.

Hence, ∂Bz/∂r = −Bzn/r. From the Maxwell equation ∇× ~B = 0,

∂Bz

∂r
=
∂Br

∂z
= −n

r
Bz ' −

n

r0
B0, Br = − n

r0
B0z,

in which the field index n is

n =
−r
Bz

∂Bz

∂r
. (20)

The equations given above with Er = Ez = 0 and with Bz = B0(r0/r)
n can be rewritten

in the coordinates x = r − r0, φ̇ = θ̇ − ω0, and z = z:

d2x

dt2
+ (1− n)ω2

0 x = 0,

d2z

dt2
+ nω2

0 z = 0.

The solutions of these equations are:

x = A cos
(√

1− nω0t
)
, (21)

z = B cos
(√

nω0t
)
, (22)

in which the amplitudes A and B depend on the initial conditions for the particle motion.

To establish the equivalence of focusing by an electric quadrupole field and of weak fo-

cusing by an inhomogeneous magnetic field we equate the focusing force due to the electric

quadrupole field and that due to the inhomogeneous magnetic field,

eEz = e
(
~v × ~B

)
z

= evBr,

for motion in the z-direction with small displacement.

For a quadrupole electric field

~E = E1(xx̂+ zẑ), with E1 =
∂Ez

∂z
,

where

E1 =
∂Ez

∂z
=

2V0

z2
1

,

in which V0 is the electric potential on the electrode at z = z1. Hence,

n =
2V0

z2
1

r2
0

E0

, (23)
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in which E0 is the particle energy. Motion in the r direction has the same n value [14]. A

simple, alternative approach is to use Eq. 15. This indicates that the force due to an electric

field linear in the distance from the axis (quadrupole field) will be the same as that due to

a magnetic field with a spatial gradient also linear in the distance from the axis, provided

that Eq. 23 holds.

The amplitude and phase of the betatron oscillations for a particle depends on its initial

point in phase space at injection. The injected pulse with a width of about 50 ns and the

subsequent kicker pulse of 400 ns determine the phase space of the beam at the initial time

from which particle orbits are considered. The electric quadrupoles are pulsed on prior to

muon injection at a lower voltage than their final voltage for a period of 20 µs in order to

eliminate muons which would otherwise not be stored (scraping) [14].

The equation of motion for the spin in its rest frame is [29–32]:

d~s

dt′
=

ge

mc
~s× ~B′,

where the primes denote quantities defined in the rest frame and ~s is the spin in that frame.

This is a classical equation but is the same as the quantum mechanical equation for the

polarization vector [33]. Thus the relativistic equation of motion for the spin is:

d~s

dt
=

e

mc
~s×

([
a+

1

γ

]
~B − a

γ

γ + 1

[
~β · ~B

]
~β −

[
g

2
− γ

γ + 1

]
~β × ~E

)
. (24)

The muon spin precession frequency is

~ωs =
e

mc

[
~B

γ
−

(
1

γ + 1

)
~β × ~E + aµ

(
~B − ~β × ~E

)]
, (25)

in which the fields ~B and ~E are the electromagnetic fields in the laboratory frame, which

has a velocity ~β with respect to the muon rest frame, and ~ωs is measured in the laboratory

frame. The orbital angular frequency is

~ωc =
e

mc

[
~B

γ
− γ

γ + 1
~β × ~E

]
. (26)

Hence, the difference frequency is given by:

~ωa = ~ωs − ~ωc =
e

mc

[
aµ
~B +

(
1

γ2 − 1
− aµ

)
~β × ~E

]
. (27)

The case where γ = γmagic is of primary interest to us. The case in which γ 6= γmagic and
~β has a small component perpendicular to the plane of the orbit is associated with betatron

oscillations, and is treated below.
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Two small, but important, effects of the electric field ~E on the spin precession frequency

ωa are first the change in ωa when the momentum p, or γ, does not have the magic value.

This effect can be represented as a change in the effective magnetic field [14],

Bz(eff) = Bz +
Er

β

1 + 1
aµ

γ2

 . (28)

The second effect is a pitch correction arising from the vertical betatron oscillations [34].

This correction arises if the muon has a small component of velocity vz perpendicular to

the equilibrium plane. The particle will follow a spiral path with pitch angle ψ and ωa is

altered. The focusing force due to ~E changes vz at the betatron oscillation frequency ωz so

that ψ = ψ0 sinωzt. With electric field focusing and with the magic γ, the corrected value

ωa is

ω′a = ωa(1− C), (29)

in which the correction factor C ∼ 10−6 is given by

C =
1

4
ψ2

0

[
1− ω2

a

γ2(ω2
a − ω2

p)

]
. (30)

A mechanism for muon losses in the storage ring is that of non-linear resonances [35, 36].

Field imperfections, primarily associated with higher order moments in the electric field, or

alignment errors, drive resonances in the betatron motion in single or coupled transverse

degrees of freedom. This causes the amplitude of these oscillations to breathe or to grow

continuously. This change in amplitude of the oscillation depends on the proximity to the

resonance conditions and generally leads to muon loss from the storage ring. Such loss is

minimized by a suitable choice of the field index n, in our case n ' 0.137, well away from the

resonance conditions. Similarly, muon depolarization can occur due to field imperfections

which affect the spin and betatron motions, and can drive resonances at the spin precession

frequency.

V. EXPERIMENTAL SETUP

The experiment is done at the Brookhaven National Laboratory (BNL). It uses a sec-

ondary muon beam obtained from the primary proton beam of the Alternating Gradient

Synchrotron (AGS) and a superferric storage ring.

Highly polarized µ+ of 3.09 GeV/c are injected through a superconducting inflector into

a storage ring 14.2 m in diameter with an effective circular aperture 9 cm in diameter. The
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superferric storage ring has a homogeneous magnetic field of 1.45 T, which is measured by an

NMR system relative to the free proton NMR frequency. Electrostatic quadrupoles provide

vertical focusing. A pulsed magnetic kicker gives a 10 mrad deflection which places the

muons onto stored orbits. The muons start in 50 ns bunches and debunch with a decay time

of about 20 µs owing to their 0.6% momentum spread. Decay positrons are detected using

24 lead/scintillating fiber electromagnetic calorimeters read out by waveform digitizers. The

waveform digitizer and NMR clocks were phase-locked to the Loran C frequency signal.

The AGS accelerator complex at BNL is shown in Fig. 7. The intense proton beam of

200 MeV from the linac is injected into a booster ring for acceleration to 1 GeV. The output

beam from the booster is injected into the AGS where it is accelerated to 24 GeV. An output

beam of up to 60× 1012 protons per AGS cycle is ejected in pulses of about 50 ns with either

6 or 12 pulse bunches per AGS cycle of 2.5 s.

An areal photograph of the BNL accelerator complex (Fig. 8) shows the AGS, the relativis-

tic heavy ion accelerator (RHIC) and the relatively small muon storage ring. A photograph

of the muon storage ring indicating also some associated equipment, is shown in Fig. 9.

The beamline to the muon storage ring is shown in Fig. 10. The proton beam from the

AGS with 60× 1012 protons per AGS cycle impinges on a nickel target of one interaction

length. Either 6 or 12 pulses per AGS cycle are used with the interval between pulses being

33 ms.

The 3.1 GeV/c positive muon beam was formed from decays of a secondary pion beam

which was 1.7% higher in momentum, thus providing a muon polarization of about 95%.

The beamline consists of dipole, quadrupole and sextapole magnets. The pion decay channel

is a 72 m long straight section of the secondary beamline. The muons were selected at a

momentum slit, where the (higher energy) pions were directed into a beam dump. The beam

composition at the entrance to the storage ring was measured with a threshold Čerenkov

counter filled with isobutane. By stepping the pressure from zero to 1.2 atm, the thresholds

for Čerenkov light from e+, then µ+, and finally π+ were crossed. The beam was found to

consist of equal parts of positrons, muons and pions, consistent with Monte Carlo predictions.

While this measurement was not sensitive to the proton content of the beam, calculations

predict it to be approximately one third of the pion flux. The flux incident on the storage

ring was typically 2× 106 for each proton pulse.

The transverse beam emittance is matched with four quadrupoles just upstream in the

beamline of the g − 2 storage ring to allow passage into the storage ring through the back

leg of the ring magnet and the inflector described below.

A superconducting inflector magnet [37] 1.7 m in length placed between the hole in the
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FIG. 7: Schematic overview of the AGS complex at BNL.

back of the yoke and the edge of the muon storage region substantially cancels the 1.45 T

storage-ring field and delivers the beam approximately parallel to the central orbit but 77 mm

farther out in radius (Fig. 11). The inflector aperture of 18(w) × 57(h) mm2 is necessarily

smaller than the storage aperture of 90 mm diameter, so that the Twiss parameters of the

incoming beam do not match those of the ring.

The 10 mrad kick (Fig. 12) needed to put the muon beam onto a stable orbit was achieved

with a peak current of 4100 A and a half period of 400 ns. Three pulse-forming networks

powered three identical 1.7 m long one-loop kicker sections consisting of 95 mm high parallel

plates on either side of the beam. The current pulse was formed by an under-damped LCR

circuit. The kicker plate geometry and composition were chosen to minimize eddy currents.
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FIG. 8: Areal photograph of the BNL accelerator complex.

The maximum additional field seen by the muons in a kicker region was 0.017 T. Some 20 µs

after the kicker pulse, the local residual field due to eddy currents is seen to be smaller than

∼ 1× 10−6 T, which corresponds to less than 0.1 ppm on the global field. The time-varying

magnetic field from the eddy currents was calculated with the program OPERA and was

measured in a full-size straight prototype vacuum chamber with the use of the Faraday effect.

Since the muons circulate in 149 ns, they were kicked several times before the kicker pulse

died out.

The magnetic field in the storage ring must be determined at the sub ppm level

(∼ 0.1 ppm), so the storage ring field must have high homogeneity and stability. The super-

ferric magnet [38] is constructed of iron with superconducting coils. Construction tolerances

of 1 mm are achieved for our 14 m diameter storage ring (Fig. 13).

High quality steel is used and in particular for the pole pieces ultra-low-carbon steel is

employed. The opening between the pole faces is 18 cm and the active storage region is 9 cm

in diameter. Wedge-shaped openings between the pole faces and the return yoke allow the

insertion of wedge-shaped iron shims in the gaps. The openings between the pole pieces and

the return yoke help to decouple the field in the gap from the imperfections in the yoke iron
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FIG. 9: The E821 muon storage ring.

such as pot holes and inhomogeneities of the iron.

The magnet is excited by three NbTi/Cu superconducting coils which are 14.2 m in diam-

eter and carry 5200 A. A low-voltage high-current power supply with a current stability of

0.3 ppm is used. Feedback to the power supply from the NMR field measurements maintains

the field to 0.1 ppm.

Extensive provisions for shimming include large iron pieces around the yoke, iron shim-

ming wedges, edge shims, several types of correcting coils on the surface of the pole pieces,

and iron shims on the pole pieces near regions where the poles meet. The shimming wedges

affect principally the dipole and quadrupole components of the field, whereas the edge shims

affect the sextupole components.

Features of the magnetic field measurement are shown in Fig. 14. A pulsed NMR system

is used and a free induction decay is shown [39]. The Fourier spectrum is centered at 62 MHz

(B − 1.45 T) with a width of 40 Hz, so the NMR frequency is measured to 0.1 ppm.

The magnetic field along the muon trajectory in the active volume of the storage ring
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FIG. 10: Schematic overview of the beamline to the muon storage ring.

is measured by 17 NMR paraffin probes mounted on a trolley which is pulled through the

vacuum chamber of the storage ring by a cable car mechanism [40]. The electronics for the

NMR system is contained within the trolley. The trolley traverses the ring in about 2 hrs

and obtains some 50,000 NMR readings. A trolley run is taken every 2 or 3 days. Some 375

NMR probes are embedded in the top and bottom walls of the aluminum vacuum chamber

and the field is measured continuously by these fixed probes. The average of some 100 of

these probes is used as a feedback signal to the power supply for the superconducting coils.

The trolley probes are calibrated against a standard probe before and after data-taking with

the muon beam. The data are written to disk for off-line analysis.

Results of magnetic field measurements are shown in Fig. 15. The field measured with the

center probe on the trolley is plotted versus the azimuthal angle and is seen to be uniform to

about ± 50 ppm. The exception is a region of about 1◦ near the superconducting inflector

where its fringe field changes the field by about 600 ppm. A new inflector was installed after

1999 which did not have this fringe field. The average radial field component was measured
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FIG. 11: Cross sectional view of the inflector magnet at the injection into the ring. Shown are (1)
the storage vacuum chamber wall, (2) the muon storage region, (3) the inflector channel, (4) the
superconducting coils, and (5) the inflector casing.

using Hall probes and found to be less than 50 ppm of the vertical field value [41].

The 17 trolley probe measurements obtained in a complete trolley revolution are used to

evaluate the average azimuthal field which is expressed in terms of its multipoles with B0

being the dipole field determined to about 0.1 ppm. Contours of equal B are shown with

1 ppm levels with respect to B0 indicating that the azimuthal average field varies by only

a few ppm over the cross section of the storage ring. The field average of the fixed probes

with respect to a reference field obtained from trolley runs is shown versus time. Fig. 15d

shows the perturbation of the NMR reading of a single fixed probe caused by the trolley as

it passes by.

Calibration of the trolley probes with respect to our standard probe is necessary to obtain

finally the field in units of the free proton NMR frequency. Our standard probe (Fig. 16)

is a spherical water sample carefully constructed to contain a 1 cm3 spherical water sample

and to be well insulated from environmental perturbations [42]. The diamagnetic shielding

factor σ given by

Bp = (1− σ)Bsphrwater

has been measured in a separate experiment [43] which measured gp(H2O)/gJ(H) and a
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FIG. 12: The schematics of muon injection and storage in the g − 2 ring (left) and the measured
changes in the field B when the kicker is fired (right).

second which used a hydrogen maser to measure gJ(H)/gp(H) [44]. In addition, a theoretical

calculation of gp(H)/gp is required [45, 46]. These give

gJ(H)

gp(H2O)
= −658.216 009 1(69),

gJ(H)

gp(H)
= −658.210 706(6), and

gp(H)

gp

= 1− 17.733 · 10−6.

Hence,

σ(H2O) = 25.790(14)× 10−6 at 34.7◦C [43],

which includes the calculable shielding for a proton in atomic hydrogen, σ = 17.733 ppm [45,

46]. The temperature dependence of σH2O is measured to be 10.36(30) ppb/ ◦C [47].

The ideal electric quadrupole field required for vertical focusing of the muon beam is

shown in Fig. 17a. Fig. 17b shows a cross sectional view of the actual electrode configuration

consisting of rectangular plates. There are four electric quadrupole sections around the ring,

each covering about 40◦ in azimuth. The electrodes are powered on for about 1 ms starting
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FIG. 13: Cross sectional view of the C magnet. Shown are (1) the yoke plates, (2) the pole
tips, (3) the cryostat, (4) the mandrels, (5) the muon storage region, (6) the edge shims, (7) the
superconducting coils, (8) the wedge shims, and (9) the air gap. The magnet opening faces towards
the ring center.

shortly before each beam pulse and then turned off to avoid electrical breakdown. The

nominal electrode voltages are ±24 kV. However, for about 15µs following muon injection,

two of the electrodes are kept at lower voltages of ±17 kV to steer the outer region of the

beam onto collimators inside the storage ring. This procedure, called scraping, removes

muons from the ring which could otherwise be lost in an uncontrolled manner during our

measurement time.

The stored muon beam, its position, width, and oscillatory motion in its dependence on

the kicker and quadrupole settings, is measured several times during the running period

with scintillating fibers that can be plunged into the storage region at two locations. Indi-

rect measurements of the beam position and width are provided by horizontal scintillation

fingers mounted on the front-face of five positron calorimeters, described below. The front

scintillation counters are used in addition in determining muon beam losses.

Positrons from the in-flight decay µ+ → e+νe~νµ are detected with lead/scintillating fiber
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FIG. 14: The field trolley inside the storage region (top) and the free induction decay signal
(bottom).

calorimeters [48] placed symmetrically at 24 positions around the inside of the storage ring

(Fig. 18). The electromagnetic calorimeters are connected by light guides to four fast and

stable photomultipliers, and the signals are added. The calorimeter has a good energy res-

olution (σ/E = 10% at 1 GeV) and the scalloped vacuum chamber minimizes preshowering

before the positrons reach the calorimeters. Fig. 18 shows a typical pulse with a width of
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FIG. 15: a) The magnetic field measured with the trolley center probe versus azimuth from mea-
surements taken on February 5, 1999. The dip at 350◦ results from the inflector fringe field. The
field values are expressed in ppm with respect to a central azimuthal average field B0 = 1.451 266T.
b) Field tracking with the fixed probes, as described in the text. c) Multipole expansion of the field
averaged over azimuth. The contour lines are 1 ppm contour lines. d) The perturbation of a fixed
probe reading as the trolley passes by.
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FIG. 16: The reference probe used in the g − 2 field measurements.

about 20 ns and also shows a succession of pulses during a 55 µs time interval. For each

signal its time and energy is determined in the off-line analysis. To a good approximation

the decay positron time spectrum is described by

N(t) = N0(E) exp

(
−t
γτ

)
[1 + A(E) sin (ωat+ φ(E))] , (31)

in which the normalization N0(E) and the parity violating asymmetry parameter A(E)

depend strongly on the energy threshold E. The dependence of the phase φ(E) results from

the E dependence of the measured positron detection times relative to the muon decay times,

and is much weaker. The hardware energy threshold is set to about 1 GeV.

The photomultiplier tubes of the calorimeter were gated off before injection, and when

gated on, they recovered to 90% pulse height in ≤ 400 ns and reached full operating gain in

several µs. The early data until about 10 µs were used in the off-line analysis to determine
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FIG. 17: Illustration of electrostatic focusing in the g − 2 experiment.

FIG. 18: One of the 24 positron calorimeters in the g − 2 experiment (left), together with event
displays of the signal shapes recorded with the waveform digitizers for two time scales (right).
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FIG. 19: Observed decay positron energy spectra a) when the muon spins predominantly oppose
the muon momenta and b) when the spins are along the momenta. The corresponding g−2 phases
are illustrated in the insets.

the muon rotation frequencies. The detector gains were constant 25–40 µs after injection.

Data were accumulated for about 10 muon lifetimes following injection.

The calorimeter pulses were continuously sampled by custom 400 MHz waveform digitizers

(WFDs) — similar to the subsequent design of Ref. [49] — which record at least 16 8-bit

samples (2.5 ns each) on both the fast rising and slower tail of the positron pulse, and thus

provide both timing and energy information. The NMR and WFD clocks were phase-locked

to the same LORAN-C [50] frequency signal. The waveforms were zero-suppressed and

stored in buffer memories until the end of the AGS cycle. Between AGS acceleration cycles

the data were written to tape for off-line analysis, as were the calorimeter calibration data.

A laser/LED (light-emitting diode) calibration system was used to monitor calorimeter

time and gain shifts during the data-collection period. Early-to-late timing shifts over the

first 200 µs were, on average, less than 20 ps. Phototube gain shifts were determined from

the off-line e+ energy spectrum to be less than 0.3% from 32 µs on.

Positron energy spectra are shown in Fig. 19. For a single detector and single positron

the maximum energy is 3.1 GeV. Higher energy signals are due to detection resolution and

overlapping pulses. The difference in the energy spectra when the spin direction is pointed

towards and away from the detector is owing to the muon decay characteristics.
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FIG. 20: Time spectrum for the 1 · 109 analyzed e+ with energies larger than 2 GeV together with
the fitted function discussed in the text (top) and a comparison of the number of analyzed positrons
for the results published to date (bottom).

A positron time spectrum is shown in Fig. 20 from a starting time of 32 µs to 700 µs. The

exponential decay with the muon dilated lifetime of about 64 µs as well as the modulation

with the g− 2 frequency of about 230 kHz are evident. The data were acquired in sequences

of about 30 minutes, so called runs, during about 500 hours of the two month running period



30

in the winter of 1999. The total number of positron counts obtained in the CERN experiment

and in the three BNL data-taking periods are shown in Fig. 20.

VI. DATA ANALYSIS

The analysis of aµ follows, naturally, the separation of the measurement in the frequency

ωp related to the magnetic field and the frequency ωa related to the muon spin precession,

aµ =
R

λ−R
, (32)

where R = ωa/ωp and λ = 3.183 345 39(10) (30 ppb) [25] is taken from external measure-

ments and theory. The analyses of ωp and ωa have both been performed by several largely

independent groups within the muon (g − 2) collaboration. Only after each of the analyses

had been finalized were the results for ωp and ωa from the various analyses combined, and

was the value of aµ evaluated. At no earlier stage was the value of aµ or R known to any of

the collaborators.

In the following, we choose to describe one analysis of ωp and one analysis of ωa in some

detail, followed by a short overview of the differences with other analyses and a discussion

of their results. It should be noted that, at the pursued precision, both the analysis of ωp

and the analysis of ωa are intricate enough to have taken well over a year to complete. Only

aspects are reviewed here.

A. The analysis of ωp

The analysis of the 1999 magnetic field data starts with the calibration of the NMR

probes in the field trolley from measurements taken at the beginning and end of the 1999

running period. In these measurements, the field in the storage ring is tuned to very good

homogeneity at specific calibration locations. Its value is then measured with the 17 NMR

probes mounted in the trolley shell, after which the trolley is moved out of the way. A single

probe is then plunged into the storage vacuum and positioned to measure the 17 field values

corresponding to the same spatial configuration as the trolley probes (cf. Fig 14). The

difference of the trolley probe readings and the plunging probe readings forms a calibration

of the trolley probes with respect to the plunging probe, and hence with respect to each

other. Drifts of the field during the calibration are determined by remeasuring the field with

the trolley following the measurements with the plunging probe, and also using the readings

from nearby NMR probes in the outer top and bottom walls of the vacuum chamber. The

plunging probe, as well as a select subset of trolley probes, are thereafter calibrated in
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air against our standard probe [42] using a similar sequence of measurements. The series

of calibration measurements were made by several collaborators independently. The leading

calibration uncertainties result from the residual inhomogeneity of the field at the calibration

locations, and from position uncertainties in the active volumes of the NMR probes. The

uncertainties in the azimuthal direction were estimated from measurements in which the

trolley shell was purposely displaced. The uncertainties in the radial and vertical directions

were estimated by comparison of trolley and plunging probe measurements during which a

known and relatively large sextupole field of about 7 ppm at r0 = 4.5 cm was applied using

the surface correction coils. Their total is estimated to be 0.2 ppm, as indicated in Table I.

The dependencies of the trolley NMR readings on the supply voltage and on other settings,

as well as the dependence on the temperature inside the trolley shell, were measured to be

small in the range of operation. The combined upper limits are included as a systematic

uncertainty (”other”), which also includes the effects from the measured transient kicker

field caused by eddy currents (Fig. 12). The uncertainty in the absolute calibration of the

standard probe amounts to 0.05 ppm.

The magnetic field inside the storage region was measured 17 times with the field trolley

during the data collection from January to March 1999. Fig. 15a shows the field value mea-

sured with the center trolley probe in the storage ring versus the azimuthal angle. Fig. 15c

shows a multipole expansion of the azimuthal averages of readings from all probes,

By =
∞∑

n=0

Cnr
n cos(nφ)−

∞∑
n=0

Dnr
n sin(nφ), (33)

Bx =
∞∑

n=0

Cnr
n sin(nφ) +

∞∑
n=0

Dnr
n cos(nφ), (34)

where the coefficients Cn and Dn are the normal and skew multipoles, respectively. The

dipole term C0 dominates the other multipoles, because of the field uniformity. In the analy-

sis, terms up to and including n = 4 — the decupoles — are kept. Dedicated measurements

with probes extending to the full beam aperture of 4.5 cm radius — 1.0 cm beyond the outer

trolley probes — show that the neglect of higher multipoles is at most 0.03 ppm in terms of

the average field encountered by the stored beam muons, thus confirming design calculations.

The field in azimuth is seen to be uniform to within about 50 ppm, except for a region of

about 1◦ near 350◦, where the inflector magnet is located. An imperfection in its supercon-

ducting shield resulted in a residual fringe field, which reduces the storage ring central field

by about 600 ppm up to 3000 ppm at the edge of the aperture. Consequently, in this region

not all 17 NMR probes in the trolley could be operated with their nominal settings, and the

field had to be measured in separate scans with the field trolley. The uncertainty associated
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with matching the measurements in the narrow inflector region with the measurements in

the storage ring is estimated to be 0.2 ppm. Uncertainties, or more precisely non-linearities,

in the determination of the trolley position during the measurements — from the measured

cable lengths and from perturbations on the readings from fixed probes as the trolley passes

— affect the azimuthal average of the field at the level of 0.1 ppm.

The measurements with the field trolley serve, in addition, as a calibration of the 375 NMR

probes in the outer top and bottom walls of the storage vacuum chamber, the so called fixed

probes, which are used to track the field when the field trolley is ’parked’ in the storage

vacuum just outside the beam region, and muons circulate in the storage ring (cf. Fig 14).

A representative probe reading when the field trolley passes by is shown Fig. 15d. The

calibration for each fixed probe consists in determining the difference between the trolley

measurement of the field at the azimuthal location of the fixed probe and the fixed probe

readings, interpolated so as to cancel the perturbing effects of the trolley shell and electronics.

The calibration may change in time, for example when the magnet is ramped or when the

settings of surface correction coils are modified. Hence, field measurements with the trolley

are made whenever ramping of the magnet or a change in settings requires such, and repeated

typically two to three times per week. A weighted average of the readings of the fixed probes

is formed in a way so as to optimize the correlation with the determination of the azimuthal

average of the dipole field B0 measured with the field trolley. Fig. 15b shows the scatter of

the difference of the determinations of B0 from measurements with the fixed probes and with

the trolley probes. The scatter of about 0.2 ppm of the differences in periods of constant

settings and magnet powering is a measure of the uncertainty in the field tracking with the

fixed probes.

The field frequency ωp in Eq. 32 is the free proton NMR frequency averaged over the

muon distribution and over the analyzed data sample. The field integral encountered by

the muon beam has been studied by tracking 4000 muons for 100 turns through a measured

field map. The simulation shows that the value of the field integral over the beam trajectory

is identical to within 0.05 ppm to the azimuthally averaged field value, taken at the beam

center. The beam center along the radial axis is determined by analyzing the debunching of

the beam pulses [24], and found to be 3.7(1.0) mm outside of the central orbit. The vertical

beam center is determined to be 2(2) mm above the center plane from measurements with

the front scintillation counters and scintillating fibers mentioned before in Section V.

The resulting value for the field frequency ωp is,

ωp = 61 719 256(25) Hz (0.4 ppm), (35)

where the uncertainty has leading contributions from the calibration of the trolley probes
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TABLE I: Systematic errors for the ωp analysis

Source of errors Size [ppm]
1. Standard probe absolute calibration 0.05
2. Calibration of B0 against standard probe 0.20
3. Baver from trolley probes due

to position uncertainty 0.10
4. Inflector fringe field 0.20
5. Tracking by fixed probes 0.15
6. Average over muon distribution 0.12
7. Others † 0.15
Total systematic error on ωp 0.4

† higher multipoles, trolley temperature and its power
supply voltage response, andeddy currents from the
kicker.

and the inflector fringe field (cf. Table I), and is thus predominantly systematic. A second,

largely independent, analysis of the field has been conducted, using a different selection of

fixed NMR probes among other differences. The results agree for each trolley measurement

to within 0.05 ppm and to within 0.03 ppm for the frequency ωp in Eq. 35.

B. The analysis of ωa

The determination of the frequency ωa from the recorded calorimeter WFD traces pro-

ceeds in stages.

In the initial stage, the WFD traces are scanned to identify positron pulses and to measure

their properties. Conceptually, a sample of about 104 pulses in the energy range of 1–3 GeV

is selected for each calorimeter individually to form an average pulseshape, which is then

used in fits to all WFD traces. The selection is made from recordings well after the muons

were injected into the ring, so as to ensure that transient effects have faded away and the

traces consist of responses to single positrons. Fig. 21 shows the average pulseshape for

one of the positron calorimeters (left) together with its application to a typical WFD trace

(right). The algorithm is seen to assign an appropriate pedestal for the trace, to identify

the single positron pulse, and to fit its peak value (energy) and location (time). A fraction

of several percent of the recordings is found to contain multiple positron pulses per WFD

trace. Extensive studies of the pulse finding and fitting algorithm show that in such cases

each of the pulses is identified and measured correctly, provided that the pulse separation



34

FIG. 21: The average response to a single positron pulse in the energy range of 1–3GeV for both
WFD readout phases (a) and (b) its application to a typical pulse.

exceeds 3 ns and the pulse energy is larger than 0.4 GeV. For intervals smaller than 3 ns,

the pulses are reconstructed as a single pulse, whereas pulses with energies below 0.4 GeV

escape reconstruction. The studies of the algorithm show, furthermore, that time shifts of

the positron reconstruction chain are smaller than 20 ps over 200 µs, so that time shifts

contribute less than 0.1 ppm systematic uncertainty in the frequency ωa.

In the subsequent analysis stage, the data collected to study systematic effects are sep-

arated from the data with regular running conditions. Data for which the settings of the

apparatus are known to be different from their nominal values are rejected, as are data for

which the correspondence could be established. Data recorded during occasional mishappen-

ings are of course discarded as well. The consistency of the remaining data is verified with

a variant [51] of the Kolmogorov-Smirnov test, in which the (integral) positron time-energy

spectra for each data run are compared with a reference spectrum created by randomly

sampled events from all runs. Per construction, this test is insensitive to oscillations in the

spectra and therefore does not bias the sample available for further analysis of ωa.

The time spectrum of the remaining positrons is shown in Fig. 20 in the time range

32–700µs and for positron energies larger than 2GeV. Corrections were applied to mask

the bunched time structure of the beam injection and to eliminate a small distortion from

overlapping pulses, so called pileup. The key characteristics of the spectrum arise from muon

decay and spin precession, and are described by:

N(t) = N0(E) exp

(
−t
γτ

)
[1 + A(E) sin (ωat+ φ(E))] , (36)
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FIG. 22: Fourier transform of residuals of fit to the 1999 data-taking into account muon decay and
spin precession.

in which N0(E) is the normalization, A(E) the asymmetry, and φ(E) the phase, as before

(cf. Eq. 12). The statistical uncertainty on the frequency ωa from a fit with a function

f(t) = N(t) to the time spectrum is inversely proportional to A
√
NE with NE the total

number of positrons in the spectrum with energies larger than E, and has its optimal value

for E ' 2 GeV. The optimal value amounts to 5 ppm for the 84 · 106 analyzed positrons from

the 1998 data [52], which are described adequately with this function.

The tenfold larger positron sample collected in 1999 requires consideration of additional

effects, as evidenced from the Fourier transform of residuals in Fig. 22 from a fit f(t) = N(t)

to the 1999 data. We discuss several of these effects — coherent betatron oscillations, muon

losses, detector gain changes, and AGS background — after describing the corrections to the

data for pileup and for beam debunching mentioned before.

• The number of overlapping pulses in the reconstructed data is proportional to the in-

stantaneous counting rate squared (dN/dt)2 and to the minimum pulse separation time

of the pulse reconstruction algorithm. This fraction is about 1% of the event sample

at 32 µs when the fits of ωa to the data are started, and vanishes exponentially with

a time constant equal to half the dilated muon lifetime. Pileup distorts the positron

time spectrum because of miscounting of the number of pulses and misidentification

of the energies and times. Since the phase φ in Eq. 12 depends on the positron energy
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and correlates strongly with the frequency ωa in fits, pileup potentially causes a sizable

error in the fitted value of ωa. It is thus advantageous to apply a correction to the

data prior to the fitting, which consists in a subtraction of a pileup spectrum that is

constructed using indiscriminately recorded pulses as follows. Positron pulses found

within a window at a fixed, short time after the positron pulse that triggered the WFD

module are treated as if they overlap with the trigger pulse, that is, the times of both

pulses are averaged and the energies added to form a single pulse. The width of the

window is taken equal to the minimum pulse separation time of 3 ns. For data with

energies above 2 GeV — twice the hardware threshold of about 1 GeV — the differ-

ence of the thus found spectrum and the uncorrected spectrum determines the pileup

spectrum. The difference spectrum has both negative and positive entries, since pulses

may be lost by combination as well as gained when pulses each with energies below the

software threshold (2 GeV) are combined to form a single pulse with sufficient energy

to pass the threshold.

Signals with energies below about 0.4GeV are too small to be reconstructed with the

pulse finding algorithm and are thus not accounted for in the subtraction procedure

described above. These small signals distort the pulse reconstruction but do not, on

average, affect the energy. They do cause small time dependent shifts in the asymme-

try A(E), and to a smaller extent in the phase φ(E). The observed stability of the

asymmetry A(E) with time is used to set a limit on the shift of the fitted value of ωa

that would result through its correlation with φ(E).

Fig. 19 shows the spectrum prior to the correction for pileup and the agreement between

the positron energy spectrum after the pileup correction has been applied and the

spectrum well after beam injection when the instantaneous rates are low and pileup

is negligible. The inset illustrates that the average energy after pileup subtraction is

constant with time, as expected. Expressed in terms of a shift in ωa, the size of the

correction for pileup amounts to 0.3 ppm. Its uncertainty is estimated to be about

twice smaller.

• The injection of the beam in narrow bunches into the storage ring results in a strong

modulation of the initial part of the decay positron time spectrum with the cyclotron

period of 149.185 ns. This effect is, in fact, used to determine the equilibrium beam

radius. The modulation fades with a characteristic time of about 24 µs owing to the

0.6% momentum spread in the beam. Since the fits of ωa are started as early as 32µs

after beam injection, a correction to the data is necessary. An effective correction is

found to consist in randomization of the arrival times of all decay positrons from a
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FIG. 23: Energy spectrum of all reconstructed positrons (thick line), together with the energy
spectrum well after beam injection when the instantaneous rates are low and pileup is negligible
(thin line) and the energy spectrum after the correction for pileup (dashed line). The inset shows
the energy averaged over the g− 2 period versus time before (filled circles) and after (open circles)
the correction for pileup has been applied.

single beam pulse over the cyclotron period, which in addition is chosen to be the

bin-width of the fitted spectra.

• Coherent betatron oscillations: The storage ring is a weak focusing spectrometer with

field index n = 0.137, with an aperture that is large compared to the inflector aperture

of 18(w)× 57(h) mm2. Therefore, the phase space for the betatron oscillations defined

by the acceptance of the storage ring is not filled when muons are injected into the

storage ring [53]. In combination with imperfect injection angles and an imperfect

horizontal kick to store the muons onto stable orbits, this results in betatron oscillations

of the beam as a whole – coherent betatron oscillations (CBO).

The existence of these oscillations is readily appreciated from the Fourier transform

in Fig. 22. The oscillations of the beam center and of the beam width have also been

observed directly in dependence of the settings for the focusing quadrupoles and the

kick after injection, using scintillating fiber monitors plunged into the storage region

at two locations in the ring. The CBO modulate the positron time spectra, since the

calorimeter acceptances depend on the muon decay positions. The dominant effect

is caused by the horizontal oscillations, which decay with a characteristic time of

∼ 120 µs. An adequate parametrization of the effect is found to be

b(t) = 1 + Ab exp

(
−−t

2

τ 2
b

)
cos(ωbt+ φb), (37)
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and is included multiplicatively in the function fit to the data, f(t) = N(t) · b(t). The

frequency ωb = ωc(1−
√

1− n) ' 470.0 kHz, with n ' 0.137 the field focusing index

and ωc the cyclotron frequency, is determined from the Fourier spectrum in Fig. 22

and measured directly several times during the running period using scintillating fibers

that can be plunged into the storage region. The amplitude Ab is determined from the

fit and found to be about Ab ' 1× 10−2, as is the characteristic time τb ' 120 µs with

which CBO vanish, owing partly to the momentum spread in the beam. The phase φb

varies by detector, from 0 to 2π.

• Muon Losses: A small fraction of the stored beam is lost during the muon stor-

age time, despite controlled scraping of the injected muon beam with the electro-

static quadrupoles for about 15 µs immediately following injection. An adequate

parametrization of the residual losses is found to be

l(t) = 1 + nl exp

(
− t

τl

)
, (38)

and is included multiplicatively in the function fit to the data, f(t) = N(t) · b(t) · l(t).
The decay time τl is found to be τl ' 20 µs, and nl is typically less than 1%. An

independent study of the losses of stored beam was made using coincident signals from

three adjacent layers of scintillation fingers mounted on the front faces of five of the

positron calorimeters, in the absence of energy deposits in the calorimeters.

• Detector gain changes are determined using the positron energy spectra, and moni-

tored with a pulsed laser system. The gains of all but two detectors are constant to

within 0.1% over the muon storage time of about 600 µs, which causes an estimated

uncertainty of 0.02 ppm in the measurement of ωa.

• AGS background: Imperfect proton extraction from the AGS sometimes causes par-

ticles to enter the storage ring during the ∼ 600µs data collection period. These

particles, mostly positrons, may cause background pulses in the calorimeters, which

then contaminate the regular data sample. The time structure of such a background is

defined by the AGS cyclotron period of 2.694 µs, and its number distribution among

the calorimeters is characteristic of the energy [54]. Both properties have been used to

estimate the relative contamination to be' 10−4 for the 1999 data sample. Simulations

show that this corresponds to a systematic uncertainty of 0.1 ppm in ωa.

The function fitted to the 1999 data sample is thus given by

f(t) = N(t) · b(t) · l(t), (39)
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in which N(t) describes muon decay and spin precession (cf. Eq. 12), and the perturbations

b(t) and l(t) are given in Eqs. 37 and 38. The function f(t) has ten parameters that are fit

to the data, in the sense of minimizing χ2. (The frequency ωb is determined from a Fourier

analysis, as mentioned before.) Fig. 20 demonstrates the good agreement of data and fit,

as evidenced also from the value χ2 = 3819 for the 3799 degrees of freedom (dof). The

frequency ωa is determined with a statistical precision of 1.3 ppm from the 1999 data. The

fitted value of ωa correlates weakly with all free parameters, except for the phase φa, and

is thus insensitive in particular to the functional forms and values of the perturbations b(t)

and l(t).

The internal consistency of the fit results was verified in several ways. Fig. 24 shows two

examples; (top) the variation of the fitted frequency ωa versus the time at which the fit

is started, and (bottom) the fitted frequency from data of each detector individually. The

values are consistent with each other (χ2/dof = 30/21) and their average equals the fit result

from the data combined to within 0.07 ppm. The fitted lifetime, after correcting for muon

losses, is in agreement with the value expected from special relativity to within 0.1% of the

value.

Three analyses of ωa, alternative to the one just described, were made, as mentioned be-

fore. Two of these analyses made use of data processed with an independent implementation

of the pulse finding and fitting algorithm. Other principal differences concern a somewhat

different choice of data selection and fitting parameters, a refined treatment of detector gain

changes, and alternative ways to handle pileup. In one analysis, a pileup correction to the

data is made by varying the minimum pulse separation time in the reconstruction algo-

rithm and by extrapolating to the case of no minimum separation time (hence, vanishing

pileup), whereas in another analysis pileup is incorporated in the fitted function, using the

constructed pileup spectrum only to determine the associated phase. In the last analysis,

the data are randomly split in four samples n1–n4 which are rejoined in u(t) = n1(t) + n2(t),

v(t) = n3(t− τa/2) + n4(t+ τa/2), and the ratio [55]

r(t) =
u(t)− v(t)

u(t) + v(t)
= A(E) sin(ωat+ φa(E)) + ε, (40)

where τa is an estimate of the g− 2 period and the constant ε� 1. The ratio r(t) is largely

independent of effects with time scales exceeding τa, particularly the muon lifetime, and

can thus be fit with fewer free parameters. Its results have somewhat different systematic

uncertainties. Extensive further detail on two of the alternative analyses can be found in

Refs. [56] and [57].

The results from the four analyses of ωa are found to agree to within the statistical

variation of 0.4 ppm expected from the use of slightly different data reconstructions and
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FIG. 24: a) The fitted frequency ωa/(2π) versus the time after beam injection when the fit is
started. The size of the statistical uncertainty is indicated for several of the points. The band
indicates the size of expected statistical fluctuations. Both indicate 68% confidence intervals. b)
Fits to the spectra from individual detectors. Detector 2 was excluded from analysis because of a
readout problem. Detector 20 is located downstream of an array of tracking chambers; it has been
excluded from analysis because of its different energy response.

selections in the respective analyses. The combined result is

ωa/2π = 229 072.8(0.3) Hz (1.3 ppm), (41)

which includes a correction of +0.81(8) ppm for the small disproportionality of the observed

frequency and the measured field caused by vertical betatron oscillations and electric fields

in the storage ring (cf. Eqs. 24). The stated error of 1.3 ppm reflects the total uncertainty,

accounts for the strong correlations between the individual fit results, and is dominated by

the statistical contribution. The systematic uncertainties are listed in Table II. Uncertainties

due to spin resonances, the fit start time, and clock synchronization were neglected after each

was estimated to be less than 0.01 ppm.
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TABLE II: Systematic errors for the ωa analysis.

Source of errors Size [ppm]
Pileup 0.13
AGS background 0.10
Lost muons 0.10
Timing shifts 0.10
E field and vertical betatron oscillation 0.08
Binning and fitting procedure 0.07
Coherent betatron oscillation 0.05
Beam debunching/randomization 0.04
Gain changes 0.02
Total systematic error on ωa 0.3

VII. RESULTS

Only after the analyses of the magnetic field data and of the spin precession data had been

finalized, separately and independently, was the anomalous magnetic moment a+
µ evaluated,

a+
µ =

R

λ−R
,

where R = ωa/ωp and λ = µµ/µp = 3.183 345 39(10) [25]. The result [58],

a+
µ (expt) = 11 659 202(14)(6)× 10−10 (1.3 ppm), (42)

is in good agreement with previous measurements of a+
µ and a−µ [14, 24, 52] and improves

the combined uncertainty by a factor of about three (Fig. 25).

VIII. THEORETICAL VALUE FOR aµ

The theoretical value for aµ in the Standard Model can be written [59]

aµ(SM) = aµ(QED) + aµ(had) + aµ(weak). (43)

A. QED contribution

The contribution of the electromagnetic interaction, aµ(QED), includes those of the pho-

ton, electron, muon and tauon fields as in Fig. 26. The result is most conveniently expressed
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FIG. 25: Measurements of aµ and their total uncertainties.

as [60]

aµ − ae = A2

(
mµ

me

)
+ A2

(
mµ

mτ

)
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(
mµ

me

,
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)
.

The fourth order term
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) (α
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)2
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2
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) (α
π

)2
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.
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FIG. 26: Feynman diagrams of QED processes contributing to the difference of aµ and ae.

Hence,

aµ(QED) = 0.5
(α
π

)
+ 0.765 857 376(27)

(α
π

)2

+

24.050 508 98(44)
(α
π

)3

+ 126.07(41)
(α
π

)4

+ 930(170)
(α
π

)5

, (44)

where the uncertainties originate from the uncertainties in the mass ratios, and for terms of

order higher than (α/π)3 from numerical evaluation. Substituting the α−1(ae) value from

Eq. 6 one obtains [20, 59]:

aµ(QED) = 11 658 470.57(29)× 10−10 (25 ppb). (45)

A substantially improved evaluation of the higher order term A8
2(mµ/me) to reduce round-off

or digit deficiency is in progress [61]. It is interesting to note that the contribution of the

tau lepton through modifying the photon propagator amounts to 4× 10−10 or 0.36 ppm.

B. Hadronic Contribution

The hadronic contribution to aµ is about 60 ppm, and contributes the principal uncer-

tainty to aµ(SM). It arises in lowest order as a vacuum polarization correction involving

virtual hadrons as shown in Figure 28a.

This diagram can not now be calculated from QCD. However, by dispersion theory this

contribution can be related to R(s) = σtotal(e
+e− → hadrons)/σtotal(e

+e− → µ+µ−), in which

s is the square of the total energy in the center of mass for the colliding particles e+, e−.

The dispersion relation,

aµ(had 1) =
(αmµ

3π

)2
∫ ∞

4m2
π

ds

s2
K(s)R(s) , (46)

involves the integral from the threshold energy for pion pair production to ∞ and contains

the 1/s2 factor as well as the kinematic factor K(s), which increases monotonically to 1 as
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s→∞,

K(s) = x2

(
1− x2

2

)
+

1 + x

1− x
x2 lnx+ (1 + x)2

(
1 +

1

x2

) (
ln(1 + x)− x+

x2

2

)
,

where

x =
1−

√
1−

4m2
µ

s

1 +

√
1−

4m2
µ

s

.

The value for aµ(had 1) is evaluated from the dispersion integral with measured values of

R. Data from hadronic τ− decay can also be used, assuming the validity of isospin symmetry

and conservation of the vector current (CVC).

The principal contribution to aµ(had 1) comes from the region below
√
s = 1 GeV. Ex-

tensive and accurate measurements of R have been made and are continuing at the Budker

Institute of Nuclear Physics in Novosibirsk in the energy range for
√
s = 0.3 – 1.4 GeV, using

VEPP-2M and their CMD-2 detector. Their older measurements have provided the principal

data for evaluation of aµ(had 1) [62] and their much more recent and extensive data around

the ρ-meson have been published [63]. The full data set is also being analyzed for the energy

regions
√
s = 370–540 MeV and

√
s = 1040–1380 MeV. The upgraded VEPP-2M collider in

Novosibirsk (VEPP-2000) will extend the energy range up to 2 GeV. New measurements of

R are also being obtained with the e+e− collider in Beijing in the approximate energy range
√
s = 2–5 GeV [64], and are also expected from the new Frascatti φ factory. Extensive data

on hadronic τ− decay come from LEP [65, 66] and Cornell [67], and can be expected from

the B factories.

The measured spectral function of the τ− → π−π0ντ decay can be used in addition to

evaluate aµ(had 1), assuming CVC and isospin symmetry [68]. Detailed measurements of τ−

decay are provided by ALEPH [65], OPAL [66], and CLEO-II [67]. The comparison of the

pion form factor measured at e+e− colliders with the spectral function of the τ− → π−π0ντ

decay provides a test of CVC. More theoretical input is necessary to calculate radiative

corrections to experimental data and the effects of isospin breaking.

Fig. 27 presents some of the history of the evaluation of the leading contribution aµ(had 1)

and the uncertainties involved [69–72].

The ongoing experimental measurements of R mentioned above should reduce the error in

aµ(had 1). For our evaluation of aµ(had 1) we take the latest published value [69] which in-

cludes both e+e− → had data and τ− decay data and some theoretical assumptions including

the validity of perturbative QCD and QCD sum rules.
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FIG. 27: Evaluations of the leading order hadronic contribution aµ(had 1) ordered by time. The
filled circle represents the most recent published value at the time our result from data-taking in
1999 was published. Since then, a new analysis by Narison [71] and an update by Yndurain [72] et
al. of earlier works have appeared.

FIG. 28: Feynman diagrams picturing QCD processes contributing to aµ.

Feynman diagrams for higher order hadronic contributions, aµ(had 2), of relative order

α, are shown in Figure 28. Diagrams (b), (c) and (d) can be expressed in terms of the

dispersion integral, but the evaluation of diagram (e), which is designated hadronic light-by-

light scattering (lbl), has not been successfully expressed in terms of experimentally accessible

variables and must be evaluated from QCD. Approximate calculations within the framework

of chiral perturbation theory initially [73, 74] gave,
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aµ(had lbl) = −8.5(2.5)× 10−10 .

Subsequent evaluation of the pion-pole contribution using a description of the π0 − γ∗ − γ∗

transition form factor based on large-Nc and short-distance properties of QCD gave a value

of the same magnitude but opposite sign to the previous calculations [75]. This calculation

involved an effective field approach [76], and its result was confirmed [77] in a vector domi-

nance model calculation. Then the authors of the earlier calculations discovered an error in

sign [78, 79] so that we take

aµ(had lbl) = +8.5(2.5)× 10−10 . (47)

The full hadronic contribution is

aµ(had) = aµ(had 1) + aµ(had 2bcd) + aµ(had lbl)

= 692.4(6.2)× 10−10 −−10.0(0.6)× 10−10 + 8.5(2.5)× 10−10

= 690.9(6.7)× 10−10. (48)

C. Weak Correction

The weak interaction contribution based on the standard electroweak theory is a weak

radiative correction to an electromagnetic interaction and arises in lowest order from the

single loop diagrams in Figure 29a which involve νµ, Z and H particle exchange and where

two vertices are weak interaction vertices. The diagrams with the W and Z particles con-

tribute appreciably as given in Eqs. 49 and 50, but since searches establish that the mass

of the Higgs particle MH exceeds 100 GeV, the contribution from the diagram with H is

negligible.

∆aµ(W ) =
Gµm

2
µ

8π2
√

2
× 10

3

= +38.9× 10−10, (49)

∆aµ(Z) =
Gµm

2
µ

8π2
√

2
× 1

3

[
(3− 4 cos2 θW )2 − 5

]
= −19.4× 10−10, (50)

where Gµ = 1.16 639(1)× 10−5 GeV−2 [80] and sin2 θW = 0.223.
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FIG. 29: Feynman diagrams of weak processes contributing to aµ.

The next order electroweak contribution involving two loop diagrams (Fig. 29b) has been

fully calculated. The total weak contribution is

aµ(weak) = aEW
µ (1 loop) + aEW

µ (2 loop)

= 19.5× 10−10 − 4.4× 10−10

= 15.1(0.4)× 10−10 . (51)

Comparison of theory and experiment on aµ(weak) will constitute a new and sensitive test

of the unified electroweak theory with its prescription for renormalizability. Just as virtual

electromagnetic radiative corrections were critical to the development of modern renormal-

ized quantum electrodynamics, so virtual radiative corrections involving both the weak and

electromagnetic interactions are most important to the renormalized unified electroweak

theory.

Adding the QED, hadronic, and weak contributions we obtain

aµ(SM) = 11 659 176.6(6.7)× 10−10 (0.6 ppm) . (52)

IX. COMPARISON OF EXPERIMENT AND THEORY

When the new combined experimental result,

aµ(expt) = 11 659 203(15)× 10−10 (1.3 ppm), (53)

was published in the spring of 2001, the most recent, published, and commonly accepted

compilation [59] of evaluations from Standard Model theory was

aµ(SM) = 11 659 159.6(6.7)× 10−10 (0.6 ppm). (54)
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FIG. 30: The value of aµ from Standard Model theory compared with measurements of aµ, shown
with their total uncertainties.

Subtracting these values gives

aµ(expt)− aµ(SM) = 43(16)× 10−10,

a difference of about 2.6 times the stated uncertainty.

Since the time of publication, the theoretical value in Eq. 54 has been reex-

amined and, in particular, the result for the lowest order hadronic contribution

aµ(had 1) = 673.9(6.7)× 10−10 [69] has been confirmed [71, 72]. A mistake of sign in the

higher order hadronic light-by-light contribution aµ(had lbl) = −8.5(2.5)× 10−10 [73, 74] has

recently been revealed [75–77] and recognized [78, 79].

Hence, by simply reversing the erroneous sign, one finds an updated theoretical value,

aµ(SM) = 11 659 176.6(6.7)× 10−10 (0.6 ppm), (55)

and for the difference,

aµ(expt)− a+
µ (SM) = 26(16)× 10−10, (56)

as visualized in Fig. 30.

X. CONTRIBUTIONS BEYOND THE STANDARD MODEL

Proposed extensions of the standard model will in general contribute to aµ and hence a

comparison of aµ(expt) with aµ(SM) can in principle detect physics beyond the standard
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model [81]. Two classes of extensions can be considered. One postulates compositeness or

internal structure for leptons, quarks or gauge bosons and the other involves the introduction

of extra groups or particles such as extra gauge bosons, leptoquarks, or supersymmetric

particles.

In the standard model leptons, quarks and gauge bosons are assumed to be point-like

elementary particles with no internal structure. The magnetic moment of a particle provides

a sensitive test for its compositeness, as we have learned for example in the case of the

proton. If the muon is composite, the current theoretical viewpoint would imply that

∆aµ ∼
m2

µ

Λ2
, (57)

in which Λ is the composite mass scale. Models in which the muon mass is generated by

quantum loops also give contributions to aµ given by Eq. 57 in which Λ then is the scale

of new physics responsible for mµ. Extended technicolor is an example [82, 83]. From the

present accuracy in aµ and the agreement of aµ(expt) and aµ(SM) we obtain Λ > 1 TeV. A

determination of aµ to 0.4 ppm, which is the goal of the BNL experiment, would be sensitive

to Λ > 4 to 5 GeV. If the muon were composite, excited muon states would be expected, and

from an experimental accuracy for aµ at 0.4 ppm a sensitivity to m∗
µ up to 400 GeV would

be obtained, which is comparable to that from LEP II with Ecm = 200 GeV. Compositeness

of the W gauge boson or new strong dynamics would lead to an anomalous gW value ∆κ.

Determination of aµ to 0.4 ppm would provide a sensitivity to ∆κ = 0.04, which corresponds

to ΛW ∼ 2 TeV, and exceeds considerably the sensitivity possible with LEP II or LHC.

Supersymmetry connects fermions and bosons and introduces supersymmetric partners

of known particles (sparticles). The muon g–value is particularly sensitive to supersym-

metry [84–86]. Supersymmetry contributes to aµ through loop diagrams (Fig. 31), which

involve smuon-neutralino and sneutrino-chargino loops. In the limit of large tan β, which

is the ratio of the vacuum expectation values of two Higgs doublets, and for a degenerate

spectrum of superparticles with mass m̃,

aµ(SUSY) ≈ 140× 10−11

(
100 GeV

m̃

)2

tan β. (58)

If a difference aµ(exp) − aµ(SM) of 3 ppm is found, then for tan β in the range 4 – 40,

m̃ ≈ 120 – 400 GeV. Leptoquarks [87] or theories with extra dimensions [88] could also lead

to a difference of aµ(exp)− aµ(SM).

A determination of aµ to 0.4 ppm would provide a sensitivity to msusy for a large value

of the ratio of Higgs masses, which is comparable to that from the highest energy collider.
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FIG. 31: Feynman diagrams of SUSY processes possibly contributing to aµ.

Year: 1999 2000 2001 2002
beam: µ+ µ+ µ− µ−

detected events: 2.9× 109 7× 109 4× 109 8× 109

analyzable events: 1.0× 109 4× 109 3× 109 6× 109︸ ︷︷ ︸
statistical uncertainty: 0.55 ppm 0.74 ppm 0.5 ppm
systematic uncertainty: 0.5 ppm 0.4 ppm 0.3 ppm 0.3 ppm

TABLE III: Sample sizes and statistical uncertainties from the 1999–2001 data-taking periods, and
the projected increase from our proposed 2002 run.

XI. FUTURE

Since its data collection period in 1999, the g − 2 collaboration has taken data on µ+

in 2000 and — its first — data on µ− in 2001. The analyses of these data are underway,

and we presently foresee their completion with sample sizes of 4 · 109 positrons (2000) and

3 · 109 electrons (2001), corresponding to statistical uncertainties of 0.62 ppm and 0.74 ppm,

respectively (cf. Table III). If the results for a+
µ and a−µ are found to be in agreement, as

is expected from CPT invariance, the values will be combined. The combined statistical

uncertainty from data collection in 1999–2001 is then projected to reach 0.44 ppm.

To reduce the systematic uncertainties from the 0.5 ppm level achieved in the 1999 running

period,

• we replaced the inflector magnet before starting the data collection in 2000, thus further

improving the field homogeneity and measurement,

• we improved on the trolley field measurements by additional calibrations against a

plunging probe during the running periods, and by improved position measurement,

• we added a sweeper magnet to the beamline to reduce AGS background in the course



51

of the 2000 running period,

• we reduced the uncertainty due to pileup,

• we reduced muon losses during the g − 2 measurement time, and

• we improved our understanding of the effects of coherent beam motion, and adjusted

the operational settings of our ring accordingly.

As the result of these efforts combined, we tentatively foresee a reduction of the systematic

uncertainties by as much as 40% to about 0.3 ppm on our future results.

A proposal for extended running for four months in the fall of 2002 and winter of 2003 to

complete the muon g − 2 experiment by:

• balancing the statistical uncertainties for the samples on µ+ and µ−, and

• balancing the statistical uncertainty of the combined result with the systematic uncer-

tainties at the design level of about 0.3 ppm,

has been successfully defended to the Brookhaven Program Advisory Committee and is

presently pending its funding.

The evaluation of aµ from Standard Model theory has achieved an accuracy of about

0.6 ppm, which results predominantly from uncertainties in the lowest order hadronic con-

tribution. This contribution is evaluated from a dispersion relation and from cross section

measurements, and is bound to improve with the inclusion of more and more precise data,

particularly on the ratio R(s) = σtotal(e
+e− → hadrons)/σtotal(e

+e− → µ+µ−) from Novosi-

birsk and Beijing. The treatment of τ -decay data to evaluate aµ(had 1) will benefit from

further study of CVC.

The experimental value and theoretical prediction for aµ continue to have their role at

the frontiers in particle physics, provided both are pursued to best achievable accuracy and

regardless the difference of their values.

XII. EARLY HISTORY OF THE EXPERIMENT AT BNL; OUR
COLLABORATION

After the second CERN experiment was done, I (VWH) had considered the possibility

of measuring muon g − 2 using a superconducting storage ring, but then the third famous

CERN experiment with the magic γ got under way.

It was during a workshop at Los Alamos in 1982 on LAMPF II, which was to be a proton

accelerator of 40 GeV with very high intensity, that I again considered measuring (gµ − 2).
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The third CERN experiment had been done, achieving an accuracy of 10 ppm for µ+ and µ−

individually, and hence, a combined precision of 7 ppm for the muon. This 7 ppm uncertainty

was attributed predominantly to the statistical error. The quoted theoretical error at the

time was 8 ppm; it arose principally from uncertainty in the hadronic contribution to gµ − 2.

In the context of the LAMPF II workshop, where a proton beam intensity 100 times that used

in the CERN experiment was a design parameter, it seemed reasonable that the statistical

error could be greatly reduced.

Walter Lysenko of Los Alamos National Laboratory and I wrote a contribution to the

LAMPF II Workshop on the possibility of a new muon g − 2 experiment. However, a high-

intensity proton beam was then available from the AGS at BNL, and BNL had plans to

increase the intensity still further. The AGS seemed a more real possibility.

After the completion of the CERN experiment, an interesting article had been published

by R.W. Williams, one of the participants in the experiment. It was entitled ”Muon g − 2 –

the Last Word.” Williams made two very reasonable points to support his conclusion. First,

an improved experiment would be very difficult and expensive; second, the uncertainty in

the theoretical value was at the same level as the experimental uncertainty and would be

hard to improve.

Because of the importance of having a precise value for (gµ − 2), despite William’s obser-

vations, I considered two approaches for an improved experiment:

• The use of an intense polarized µ+ beam of 30 MeV/c available at LAMPF in a bottle-

type experiment similar to the free-electron ge − 2 experiment by Rich at Michigan,

• An experiment similar to the CERN III experiment, using either an iron or a super-

conducting magnet.

During 1983, Gordon Danby of BNL and I considered the design of a CERN III-type

experiment based on a superconducting magnet, and I gave a seminar at Columbia while I

was on leave from Yale. In summer 1984, a workshop was organized at BNL where we had

a large and interesting group (Fig. 32), including the principal members of the CERN III

experiment.

A letter of intent was submitted to BNL in 1984, and by 1985 our proposal, based now

on a superferric magnet, had received first-stage approval. A substantial collaboration was

developing, which included KEK in Japan and the Budker Institute for Nuclear Physics in

Novosibirsk. But funds for the necessary research and development were minimal. Indeed,

the first money to support BNL engineers for design of the superferric storage ring came

from KEK in the context of the US-Japan Collaboration in High Energy Physics. Hiromi



53

FIG. 32: At Brookhaven National Laboratory, summer 1984. Standing, from left: Gordon Danby,
John Field, Francis Farley, Emilio Picasso, and Frank Krienen; kneeling from left: John Bailey,
Vernon Hughes, and Fred Combley.

Hirabayashi of KEK was the leader of the Japanese group. Akira Yamamoto provided in-

valuable help in the design of the large superconducting coils. Eventually the Japanese group

supplied all the superconducting cable and the high-quality iron pole pieces. Yamamoto also

provided the superconducting inflector.

We shared with Novosibirsk an interest in the hadronic contribution to the muon g − 2

value. Close relations were established with Lev Barkov, a leader in the Budker Institute

for Nuclear Physics (BINP), and with his VEPP 2M detector group. Their measurements

of the hadron production cross section σ(e+e− → hadrons) with the VEPP 2M collider have

played the lead role in providing improved knowledge of the hadronic contribution to the

anomalous moment. It is now known to about 0.7 ppm, a factor of 10 better than in 1984.

Some physicists from BINP became collaborators on our muon gµ − 2 experiment at BNL.

BNL did an outstanding job in the design and construction of the muon storage ring under

the leadership of Jim Cullen. Still, in the beginning, BNL Physics Department members

were not in our collaboration and my colleague and good friend Bob Adair, who was then

Associate Director for High Energy Physics at BNL, would tell me that (gµ − 2) was not a

BNL experiment. The full development of the muon g − 2 experiment at BNL came rather
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slowly, both because of the difficulty of this precision experiment and because of lack of

funds. Eventually a strong group — presently about 70 physicists from institutes in Germany

(Heidelberg University), Japan (KEK, Tokyo Institute of Technology), Russia (BINP), and

the United States (Boston University, Brookhaven National Laboratory, Cornell University,

Fairfield University, University of Illinois, University of Minnesota, and Yale University)

— developed, with Lee Roberts as co-spokesman, Bill Morse as resident spokesman, and

Gerry Bunce as project manager.
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